Test Code LAB7474 Neuron-Specific Enolase, Serum
Additional Codes
NSE
Useful For
A follow-up marker in patients with neuron-specific enolase-secreting tumors of any type
An auxiliary test in the diagnosis of small cell lung carcinoma
An auxiliary test in the diagnosis of carcinoids, islet cell tumors, and neuroblastomas
An auxiliary tool in the assessment of comatose patients
Performing Laboratory
Mayo Clinic Laboratories in RochesterSpecimen Type
SerumSpecimen Required
Collection Container/Tube:
Preferred: Red top
Acceptable: Serum gel
Submission Container/Tube: Plastic vial
Specimen Volume: 0.5 mL
Collection Instructions:
1. Specimens should not be transported by tube system prior to centrifugation.
2. Centrifuge and aliquot serum into a plastic vial.
Specimen Minimum Volume
0.3 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Serum | Refrigerated (preferred) | 7 days | |
Ambient | 5 days |
Reference Values
≤15 ng/mL
Serum markers are not specific for malignancy, and values may vary by method.
CPT Code Information
83520
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
NSE | Neuron Specific Enolase, S | 15060-7 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
NSE | Neuron Specific Enolase, S | 15060-7 |
Interpretation
Serum neuron-specific enolase (NSE) measurement has its greatest utility in the follow-up of patients with tumors of any type that have been shown to secrete NSE. With successful treatment, serum concentrations should fall with a half-life of approximately 24 hours. Persistent NSE elevations in the absence of other possible causes (see Cautions) suggest persistent tumor. Rising levels indicate tumor spread or recurrence in patients who had previously become NSE negative.
In the context of a patient with a lung mass, disseminated malignancy of unknown origin, or symptoms suggestive of paraneoplastic disease without identifiable tumor, elevated NSE levels suggest an underlying small cell lung carcinoma (SCLC).
In patients with suspected carcinoid, islet cell tumor, or neuroblastoma, who have no clear elevations in the primary tumor markers used to diagnose these conditions, an elevated serum NSE level supports the clinical suspicion.
-Carcinoid: chromogranin A, urinary 5-hydroxyindoleacetic acid, serum/blood 5-hydroxytryptamine (serotonin)
-Islet cell tumors: variety of peptide and amine-derived hormones, chromogranin A
-Neuroblastoma: vanillylmandelic acid and homovanillic acid
When considered alongside established outcome predictors of coma, such as Glasgow coma scale and other clinical predictors (papillary light responses, corneal reflexes, motor responses to pain, myoclonus, status epilepticus), electroencephalogram, sensory evoked potentials, measurement of serum NSE concentrations provides additional information. Elevated levels are indicative of a poor outcome. Currently, no established algorithms exist to combine serum NSE concentrations and the various other predictors into a composite score that gives clear predictive outcome information. The NSE measurement, therefore, needs to be considered in a qualitative or semi-quantitative fashion and carefully weighed against other predictors by a physician experienced in examining and managing coma patients.
Report Available
1 to 3 daysReject Due To
Gross hemolysis | Reject |
Gross lipemia | OK |
Gross icterus | Reject |
Hemolysis at any level | Reject |
Day(s) Performed
Monday through Saturday
Specimen Retention Time
2 weeksMethod Description
Neuron-specific enolase is measured in this homogeneous automated immunofluorescent assay on the BRAHMS Kryptor. The Kryptor uses TRACE (time resolved amplified cryptate emission) technology based on a nonradioactive transfer of energy. This transfer occurs between 2 fluorescent tracers: the donor (europium cryptate) and the acceptor (XL665). In the NSE assay, 2 monoclonal antibodies are labeled, 1 with europium cryptate and 1 with XL665. NSE is sandwiched between the 2 antibodies, bringing them into close proximity. When the antigen-antibody complex is excited with a nitrogen laser at 337 nm, some fluorescent energy is emitted at 620 nm, and the rest is transferred to XL665. This energy is then emitted as fluorescence at 665 nm. A ratio of the energy emitted at 665 nm to that emitted at 620 nm (internal reference) is calculated for each sample. Signal intensity is proportional to the number of antigen-antibody complexes formed and, therefore, to antigen concentration.(Unpublished Mayo method)
Method Name
Homogeneous Time-Resolved Fluorescence
Forms
If not ordering electronically, complete, print, and send an Oncology Test Request (T729) with the specimen.