Sign in →

Test Code GNPFD Platelet Function Defect Gene Panel, Next-Generation Sequencing, Varies


Ordering Guidance


This test is designed to evaluate a variety of hereditary platelet function defect disorders and to be utilized for genetic confirmation of a phenotypic diagnosis of a platelet function defect disorder. If testing for hereditary platelet disorders using a larger, comprehensive panel is desired, a 70-gene platelet panel is available; order GNPLT / Platelet Disorders, Comprehensive Gene Panel, Next-Generation Sequencing, Varies.

 

This test is not designed to evaluate for hereditary bleeding disorders. For patients with clinical suspicion of an inherited bleeding disorder, it is important to exclude plasmatic factor deficiencies (eg, von Willebrand disease, hemophilia, or other factor deficiencies) prior to considering an inherited platelet function defect. If bleeding is the indication for testing and testing for hereditary bleeding disorders is desired, bleeding panels are available. See GNBLF / Bleeding Disorders, Focused Gene Panel, Next-Generation Sequencing, Varies or GNBLC / Bleeding Disorders, Comprehensive Gene Panel, Next-Generation Sequencing, Varies.

 

For assessment of hereditary platelet disorders that have ultrastructural abnormalities, such as gray platelet syndrome, order PTEM / Platelet Transmission Electron Microscopic Study, Whole Blood.

 

For assessment of hereditary platelet disorders due to quantitative surface glycoprotein deficiencies, order PLAFL / Platelet Glycoprotein Flow Platelet Surface Glycoprotein by Flow Cytometry, Blood.

 

Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.

 

Targeted testing for familial variants (also called site-specific or known variants testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.



Shipping Instructions


Specimen preferred to arrive within 96 hours of collection.



Necessary Information


Platelet Esoteric Testing Patient Information is required. Testing may proceed without the patient information, however, the information aids in providing a more thorough interpretation. Ordering providers are strongly encouraged to fill out the form and send with the specimen.



Specimen Required


Specimen Type: Whole blood

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Container/Tube:

Preferred: Lavender top (EDTA)

Acceptable: Yellow top (ACD)

Specimen Volume: 3 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send whole blood specimen in original tube. Do not aliquot.

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated


Forms

1. Platelet Esoteric Testing Patient Information is required.

2. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:

-Informed Consent for Genetic Testing (T576)

-Informed Consent for Genetic Testing (Spanish) (T826)

3. If not ordering electronically, complete, print, and send an Coagulation Test Request (T753) with the specimen.

Secondary ID

619355

Useful For

Diagnosing hereditary platelet function defect disorders for patients who have a distinct platelet function defect pattern, such as Bernard-Soulier syndrome, revealed by laboratory phenotypic testing

 

Confirming a hereditary platelet function defect disorder diagnosis with the identification of a known or suspected disease-causing alteration in one or more of 17 genes associated with a variety of hereditary platelet function defect disorders

 

Determining the disease-causing alterations within one or more of these 17 genes to delineate the underlying molecular defect in a patient with a laboratory diagnosis of a platelet function defect disorder

 

Identifying the causative alteration for genetic counseling purposes

 

Prognosis and risk assessment based on the genotype-phenotype correlations

 

Providing a prognosis in syndromic hereditary platelet function defect disorders

 

Carrier testing for close family members of an individual with a hereditary platelet function defect disorder diagnosis

 

This test is not intended for prenatal diagnosis.

Testing Algorithm

The clinical workup for detecting inherited platelet disorders should begin with a careful review of complete blood cell count and peripheral blood smear results as well as other platelet tests, such as light transmission platelet aggregometry, electrical impedance whole blood aggregometry, platelet function analyzer 100 (PFA-100), platelet transmission electron microscopy (TEM) and platelet flow cytometric analysis. TEM is an essential tool for laboratory diagnosis of various hereditary platelet disorders that have ultrastructural abnormalities, such as gray platelet syndrome. Flow cytometry is the preferred method to assess hereditary platelet disorders due to quantitative surface glycoprotein deficiencies.

 

Platelet laboratory testing may not be able to identify all inherited platelet disorders. Occasionally, the clinical picture may be consistent with a defect in primary hemostasis, but the results of platelet function tests may be normal or nondiagnostic.

 

Genetic testing for hereditary platelet disorders is indicated if:

-Platelet tests indicate a deficiency or functional abnormality

-There is a clinical suspicion for a hereditary platelet disorder due to family history or patient’s clinical presentation

-Acquired causes of deficiencies associated with platelet disorders have been excluded

 

If a platelet disorder is a concern, a set of clinical guidelines from the British Society for Haematology on testing for heritable platelet disorders is freely available.(1)

Method Name

Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

Specimen Type

Varies

Specimen Minimum Volume

1 mL

Specimen Stability Information

Specimen Type Temperature Time Special Container
Varies Varies

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Reference Values

An interpretive report will be provided.

Interpretation

All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(7) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Method Description

Next-generation sequencing (NGS) and/or Sanger sequencing are performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletions-insertions (delins) less than 40 base pairs (bp), above 95% for deletions up to 75 bp, and insertions up to 47 bp. NGS and/or a polymerase chain reaction-based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.

 

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. See Targeted Genes and Methodology Details for Platelet Function Defect Gene Panel for details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.(Unpublished Mayo method)

 

Reference transcript numbers may be updated due to transcript re-versioning. Always refer to the final patient report for gene transcript information referenced at the time of testing. Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.

 

Genes analyzed: ANO6, FERMT3, FLNA, GP1BA, GP1BB, GP6, GP9, ITGA2B, ITGB3, P2RY1, P2RY12, PLA2G4A, PTGS1, RASGRP2, SRC, TBXA2R, and TBXAS1

Day(s) Performed

Varies

Report Available

28 to 42 days

Specimen Retention Time

Whole blood: 2 weeks (if available); Extracted DNA: 3 months

Performing Laboratory

Mayo Clinic Laboratories in Rochester

CPT Code Information

81443

LOINC Code Information

Test ID Test Order Name Order LOINC Value
GNPFD Platelet Function Defect Panel, NGS 105333-9

 

Result ID Test Result Name Result LOINC Value
619356 Test Description 62364-5
619357 Specimen 31208-2
619358 Source 31208-2
619359 Result Summary 50397-9
619360 Result 82939-0
619361 Interpretation 59465-5
619362 Additional Results 82939-0
619363 Resources 99622-3
619364 Additional Information 48767-8
619365 Method 85069-3
619366 Genes Analyzed 82939-0
619367 Disclaimer 62364-5
619368 Released By 18771-6